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Abstract It is widely recognized that pollinators vary in

their effectiveness in pollination mutualisms, due both to

differences in flower–pollinator morphological fit as well

as pollinator behaviour. However, pollination webs typi-

cally treat all interactions as equal, and we contend that this

method may provide misleading results. Using empirical

and theoretical data, we present the case study of a self-

incompatible herb in which the number of flowers visited

by a pollinator cannot be used as a surrogate for the total

effect of a pollinator on a plant due to differences in per-

visit effectiveness at producing seeds. In self-incompatible

species, the relationship between interaction frequency and

per-interaction effect may become increasingly negative as

more flowers per plant are visited due to geitonogamous

pollen transfer. We found that pollinators making longer

bouts (i.e. visiting more flowers per plant visit) had an

overall higher pollination success per bout. However, per-

interaction effects tended to decrease as the bout pro-

gressed, particularly for pollinators that cause higher pollen

deposition. Since the same interaction frequency may result

from different combinations of number of bouts (plant

visits) and bout length (flowers visited/bout), pollinators

making repeatedly shorter bouts may contribute more to

plant reproduction for the same number of flowers visited.

Consequently, the magnitude of the differences in number

of interactions of different insect types may be overridden

by the magnitude of the differences in effectiveness as

pollinators, even if the same pollinators consistently

interact more frequently. We discuss two predictions

regarding the validity of using interaction frequency as a

surrogate for plant seed production (as a measure of total

effect), depending on the degree of self-compatibility, plant

size and floral display. We suggest that the role of inter-

action frequency must be tested for different species,

environments, and across wider scales to validate its use as

a surrogate for total effect in plant–pollinator networks.

Keywords Mutualistic networks � Plant–pollinator
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Introduction

In order to predict the effects of biotic interactions between

species, it is important to take into account the qualitative

and quantitative components of the interaction. The qual-

itative component accounts for differences in the traits of

the interacting individuals (e.g. anatomical or behavioural;

innate or learned). The quantitative component accounts

for differences in the intensity of the interaction (e.g. fre-

quency and/or strength; see Berlow et al. 2004; Vázquez

et al. 2005). In plant–pollinator mutualistic interactions,

both components may have a significant influence on the

outcome of plant-pollinator interactions in terms of repro-

ductive or demographic success of the interacting species

(e.g. Herrera 1987, 1989; Colling et al. 2004; Aizen and

Harder 2007). The need to take into account both the
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qualitative and quantitative components of plant–pollinator

interactions was already acknowledged in the well-known

‘‘most effective pollinator principle’’ (Stebbins 1970),

which emphasised the role of pollinators as determinants of

the evolution of flower specialization, proposing that the

most abundant and effective agents of pollen transfer

between individual plants were also the most likely to

determine their evolutionary pathways. Here we argue that

qualitative and quantitative components of species inter-

actions also need to be taken into account when analysing

webs of interactions between plants and pollinators.

An increasing number of studies analyse whole plant–

pollinator interactions networks (Olesen and Jordano 2002;

Jordano et al. 2003; Vázquez and Aizen 2004). These

interaction networks are generally characterised by binary

matrices, where each row represents a plant species and

each column a pollinator species, and the cell at the

interaction between a row (plant) and column (pollinator)

is set equal to zero (if the corresponding plant and polli-

nator species are not known to interact) or one (if the plant

and pollinator are observed to interact). In this approach,

no information is given about the qualitative and quanti-

tative components that actually occur between interactors.

This binary approach, however, may be insufficient to

properly define the topology of an interaction network,

because not all realised interactions are equally important,

which has been pinpointed as one of the most recurrent

problems in pollination network studies (e.g. Paine 1988,

1992; Memmott 1999; Blüthgen et al. 2006). A number of

recent papers emphasise the need to include a suitable

representation of the quantitative component of species

interactions (Jordano 1987; Memmott 1999; Vázquez et al.

2005; see also Goldberg et al. 1999), to assess the prop-

erties of interaction networks beyond those addressed

solely from binary matrices. Several approaches have been

recently used to include a source of variation in quantita-

tive components when characterising interaction networks,

ranging from diversity indices to rarefaction methods (e.g.

Vázquez and Simberloff 2002; Herrera 2005).

In plant–animal mutualistic networks, it has recently

been suggested that one quantitative component, the inter-

action frequency (defined as the number of interaction

events per time unit), may be used as a surrogate for the

total interaction effect (defined as the per-capita reproduc-

tive or seed dispersal performance of a plant species), when

the per-interaction effect is invariant (Vázquez et al. 2005).

The use of interaction frequency as a quantitative estimate

of total interaction effect has been proposed not only for

plant–pollinator mutualistic networks but also for other

interaction networks, including plant–seed dispersers

(Jordano and Schupp 2000), plant–ant protection (Ness

et al. 2006), and host–parasite (Poulin et al. 2008). How-

ever, a number of studies have shown that the most

abundant animal mutualists (i.e. those which presumably

interact more frequently) are not necessarily the most

effective ones on a per-visit basis (e.g. Herrera 1987, 1989;

Schupp 1993; Mayfield et al. 2001). For plant–pollinator

interactions, substantial variability in per-interaction effects

may arise because of (1) varying abilities of different pol-

linator groups to pick up pollen from anthers and deliver it

to stigma (related to their behaviour, size, mechanical

fit, etc.; e.g. Wilson and Thomson 1991, Wilson 1995,

Robertson et al. 2005); and (2) the composition of the pollen

mixture delivered by those pollinator groups (most relevant

in self-incompatible species, or in self-compatible ones with

high levels of inbreeding depression; e.g. Ivey et al. 2003,

Colling et al. 2004; Williams 2007). This variation in per-

interaction effect is the result of pollinator foraging strate-

gies and is strongly affected by the pollination environment

(i.e. the biotic and abiotic conditions under which the plant–

pollinator interaction takes place; see Rodrı́guez-Gironés

and Santamarı́a 2010). In turn, the pollination environment

may also affect the interaction frequency, for example

through the number of flowers that individual pollinators

visit per plant (hereafter referred to as bout length; e.g.

Robertson and Macnair 1995; Grindeland et al. 2005;

Williams 2007; see also Iwasa et al. 1995). Consequently,

the per-interaction effect is not necessarily an invariant,

inherent, parameter of a given plant–pollinator pair, and

disregarding its influence may limit the validity of using

interaction frequency as the main predictor of total effect.

In this paper, we present empirical data of a case study

illustrating how the variation in per-interaction effect may

limit the predictive value of interaction frequency as a

surrogate for total effects (plant seed set) in plant–polli-

nator interactions. We used the plant Linaria lilacina

(Plantaginaceae) and its pollinator assemblage. L. lilacina

is a self-incompatible herb; thus, only outcrossed pollen is

suitable for seed siring. L. lilacina is visited across its range

by several bee species that differ in abundance, behaviour,

body size and other morphological traits, which could

affect their per-visit effectiveness. We also develop a

general model for self-incompatible plant species aimed at

calculating the relative contribution of different pollinators

to seed production as a function of variable bout length and

pollen deposition ability.

Methods

Study system and sites

Linaria lilacina Lange (Plantaginaceae) is a perennial herb

endemic to mountains in southeastern Spain (Valdés 1970;

Sáez and Crespo 2005). This study was carried out in

2005–2006 in the Jaén Mountains, in two L. lilacina
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populations (Sillón del Rey [SR] and Otiñar [OT]) sepa-

rated by ca. 3 km (further details can be found in Sánchez-

Lafuente 2007). In these populations, plants sprout every

season in midwinter and produce several to many simple or

branched stems (range: 5–156; mean ± SE stems/plant:

38.21 ± 26.66; n = 195) of ca. 22 cm. in length, some of

which may produce a variable number of zygomorphic

flowers clumped at their tops (range: 20–285; mean ± SE

flowers/plant: 102.49 ± 52.18; n = 146). Morphologically,

the flowers consist of an occluded, tubular corolla, with

upper and lower whitish lips, and coloured nectar guides

(blue or yellow, depending on the population; Sánchez-

Lafuente and Alcántara, unpubl. data). A spur is present to

collect nectar produced by a nectary located under the

ovary inside the corolla. Functionally, the flowers are

hermaphroditic and self-incompatible. The fruit is a two-

locule capsule, dehiscing by valves. After successful pol-

lination, the capsule develops, producing numerous small,

brown, flattened, winged seeds (range: 8–87; mean ± SE

seeds/fruit: 68.22 ± 23.24; n = 2,541). Fruit maturation

takes between 18 and 24 days. In 2005, 15 plants were

randomly selected in SR and 14 in OT. In 2006, the same

plants were used in both populations, except for 2 plants

lost in OT that were not substituted.

Composition, behaviour and effectiveness

of the pollinator assemblage

In each season, we used the earliest 2–3 reproductive

inflorescences of each tagged plant for a week of pre-

liminary insect observations aimed at detecting the com-

position and abundance of the visitor assemblage, and

analysing their behaviour while visiting plants. Overall, we

detected seven insect species, of which four were analysed

in further detail (see ‘‘Results’’ for a justification). From

these preliminary observations, the experimental procedure

proceeded as follows.

The remaining reproductive inflorescences of the tagged

plants were covered with bags before flowering started to

avoid uncontrolled flower visitation by insects while the

plants were not observed and to deter floral herbivores that

may damage corollas before abscission (Sánchez-Lafuente

2007). When the inflorescences started to flower, we

removed the bags on each census day and observed each

plant in random order twice a day in 20 min shifts during the

time of maximum pollinator activity (12–18 h CET). Plants

in both populations were observed for between 1 and 8 h

each season, depending on their flowering phenology.

Overall, pollinator censuses extended for 18 days in 2005

and 25 days in 2006, with 144 and 200 hours of observation,

respectively (both populations pooled). During each shift,

we recorded the activities of all insects visiting flowers. For

each plant visit (i.e. each bout, hereafter defined as the

period in which an insect was visiting flowers on the focal

plant), we identified the insect species and the flowers it

visited (i.e. the bout length). In order to facilitate observa-

tions, only one insect was allowed at a time. Thus, when a

plant was being visited by an insect, any other insect

interested in that plant was gently waved away.

After each bout, we put a combination of coloured wires

around the pedicel of each virgin flower visited; the com-

bination depended on the visitor and the order in which

they were visited. We considered the order in which

flowers were visited to be a cue to assess the composition

of the pollen mixture deposited on stigmas. We assumed

that the first flower visited would receive the highest pro-

portion of xenogamous pollen, while in subsequent flowers

visited on the same plant (i.e. geitonogamous visitations),

the pollen mixture deposited would be composed of an

increasingly higher proportion of autogamous pollen

(Karron et al. 2009). Using this method, we could identify

the flowers visited in each bout, the order in which they

were visited, the visitor species, and its relative abundance,

based on visitation rates. As we only allowed one visit per

virgin flower, each flower was immediately closed by

inserting a small transparent glue drop to obstruct the

opening to the corolla aperture after it had been visited

once. At the end of each shift, the reproductive inflores-

cences were bagged again. When all flowers in an inflo-

rescence had been visited, the pollinator bag was not

removed again until corolla abscission.

Pollinator effectiveness was estimated from the number

of seeds produced per fruit. All flowers were surveyed

every third day to check for ovary enlargement. Fruits were

collected before dehiscence, and the number of seeds

counted. Plant size, measured as total flower production,

was recorded at the end of the season. Developing fruits are

used by Gymnaetron sp. (Curculionidae, Coleoptera)

weevils for ovoposition; thus, we sprayed all inflorescences

with Syngenta Karate King� (a lambda-cyhalothrin-based

insecticide) when the flowers were no longer functional for

pollination. Spray was applied every third day. Previous

observations demonstrated that this product is well toler-

ated by bees when diluted and applied according to the

manufacturer’s instructions, and it is reasonably effective

at preventing weevil attack (Sánchez-Lafuente 2007).

Data analyses

General linear mixed models were used to test differences

among pollinator groups in (1) bout length, (2) seed pro-

duction per plant in relation to the number of visits per

plant, and (3) per-visit effectiveness (seeds produced per

flower) in relation to flower visitation order in each bout. In

the latter analysis, and since Apis made significantly longer

bouts than the other pollinator groups (range: 1–9 flowers/
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bout vs. 1–4 flowers/bout; see ‘‘Results’’), bout length was

considered a continuous variable, rather than a factor, to

analyse the full range exhibited by Apis. All dependent

variables were modelled as normal. Pollinator group, sea-

son and population were included as fixed factors, while

plants were considered random blocks. Plant floral display

(when testing for differences among flower or plant visits)

or total flower production (when testing for differences

among whole plants) were used as covariates.

All statistical analyses were conducted using R 2.11.1.

(R Development Core Team 2010) and the nlme (Pinheiro

et al. 2009) package.

Model of per-interaction effects

According to Vázquez et al. (2005), the total effect (T) of a

pollinator type on a visited plant (in terms of reproductive

performance; e.g. seed production) may be defined as the

product of its interaction frequency (I, the number of

flowers visited during a timed observation period) and its

per-interaction effect (P, the per-interaction contribution to

seed production): T = IP. In the data set that Vázquez et al.

(2005) analysed, T was correlated with I, and there was no

correlation between I and P; thus, they concluded that the

interaction frequency, I, can be used as a surrogate for the

total interaction effect, T, regardless of differences in

effectiveness among interactions, P. With the same pre-

mises, we develop a model addressing the effect of varia-

tion in per-interaction effects, and its eventual negative

relationship with interaction frequency, with impacts on the

total effect.

Using a deterministic expression, if a pollinator type i

differs in effectiveness at seed production among the dif-

ferent flowers visited in each plant visit (i.e. in per-inter-

action effect), the total number of seeds (Ni) produced by

pollinator type i after each bout may be calculated as:

Ni ¼
Xb

v¼1

Pi;v; ð1Þ

where b is the bout length (i.e. number of flowers visited/

bout) of pollinator type i, and Pi;v is the number of seeds

produced by the vth flower visited on the plant.

With a more general perspective, we can calculate Ni

using a modified version of the model proposed by de Jong

et al. (1992) to evaluate the likelihood of seed production

by selfing. As our study species is self-incompatible, we

have modelled the production of seeds by crossing as a

measure of the per-interaction effect, assuming a linear

relationship between xenogamous pollen deposition and

seed set. While the relationship between pollen deposition

and seed set must saturate when there is enough pollen to

fertilise all ovules, the linear relationship constitutes a good

approximation when pollen is a limiting result, as was the

case in our experiment (we only allowed a single visit per

flower). Furthermore, unlike de Jong et al. (1992), we have

also assumed that transfer of autogamous pollen from

anthers to stigmas within the same flower is likely from the

very first flower visited on a plant as a result of the flower

handling by the visitor and given the close proximity of

these reproductive structures in our study species.

We first considered a plant that produces one seed per

flower. When a pollinator arrives at the plant, it carries a

certain amount of xenogamous pollen from previously

visited plants (E), and it may also remove a fraction (k2) of

the total autogamous pollen (A) produced by the currently

visited flower. In these calculations, we ignore any pollen

that is added to the bee’s ‘‘pollen basket’’ and hence

removed from the pollination circuit. Because both E and

k2A are available for deposition, the proportion of xenog-

amous pollen deposited is E/(E ? k2A). This is also the

probability that a xenogamous pollen grain reaches and

fertilises the ovule of the flower. If, in each flower, the

pollinator deposits a fraction k1 of the pollen it carries, and

the pollinator goes on to visit a second flower on the same

plant, upon arrival at that flower it will carry amounts

(1 - k1)E and (1 - k1)k2A of xenogamous and autoga-

mous pollen, respectively. At this second flower, the pol-

linator will collect k2A new (autogamous) pollen grains,

and the proportion of xenogamous pollen available for

deposition will be (1 - k1)E/[(1 - k1E) ? (1 - k1) k2A ?

k2A]. The same process is repeated at each new flower that

the pollinator visits on the same plant. When it moves to a

new plant, all the pollen can be considered xenogamous

and the process is re-started. In general, upon arrival at the

vth flower, the proportion of xenogamous pollen on the

pollinator available for deposition will be

1� k1ð Þv�1E

1� k1ð Þv�1E þ k2A
Pv

w¼1 1� k1ð Þw�1
:

Because this is also the probability that the vth visited

flower is fertilised, a pollinator visiting b virgin flowers on

a plant will lead to a cumulative seed set

Mi ¼
Xb

v¼1

1� k1ð Þv�1E

1� k1ð Þv�1E þ k2A
Pv

w¼1 1� k1ð Þw�1
: ð2Þ

Noting that

Xv

w¼1

1� k1ð Þw�1¼ 1� 1� k1ð Þv

k1

; ð3Þ

Eq. 2 can be simplified to

Mi ¼
Xb

v¼1

1� k1ð Þv�1E

1� k1ð Þv�1E þ k2A1� 1�k1ð Þv
k1

: ð4Þ
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In the steady state, the amount of pollen removed and

deposited on each flower must be, on average, equal. In

particular, this means that the total amount of pollen

deposited on each flower must be independent of the

number of flowers visited on a plant. Hence, from the first

flower visited on a plant, we have that the amount of pollen

removed (k2A) must equal the amount of pollen deposited,

k1(E ? k2A), and therefore k2A = Ek1/(1 - k1). Substituting

into Eq. 4, and after some simplifications, we obtain

Mi ¼
Xb

v¼1

1� k1ð Þv¼ 1� k1ð Þ � 1� k1ð Þbþ1

k1

: ð5Þ

For plants that can produce several seeds per flower, the

seed set can be obtained by multiplying Mi by a certain

constant. For this reason, we refer to Mi, the seed set

divided by a constant, as the normalised cumulative seed

set. If a pollinator deposits enough outcrossed pollen in a

single visit to fertilize all ovules, the normalised

cumulative seed set would equal the number of seeds

produced divided by the mean number of ovules per flower.

If this premise does not hold, normalization would be

obtained by dividing the number of seeds produced by the

first flower visited, but the model would yield only

approximate results. Note that, in the steady state (in

practice, except for the first handful of flowers visited in a

foraging trip), the normalised cumulative seed set, Mi,

depends only on the number of flowers per plant that the

pollinator visits, b, and its pollen deposition ability (the

proportion of carryover pollen that it deposits at each

visited flower), k1.

Values of k1 and b may be pollinator-specific for each

target plant species, although b may also depend on the

biotic or abiotic conditions in which the interactions take

place (e.g. the spatial distribution of plants, population size,

plant size, floral display, etc.). Variation in these parame-

ters may, thus, influence variation in per interaction effects.

As parameters for our model, we will use values of bout

length (b) in the range 1–8 flowers per bout (those observed

in our field study; see ‘‘Results’’), and values of pollen

deposition (k1) obtained from published sources (de Jong

et al. 1992, and references therein) for a number of

hymenopteran (Bombus sp. and Apis mellifera) species. We

will consider the cases of k1 = 0.02, 0.19 and 0.47 (mini-

mum, mean and maximum values, respectively).

Although the total amount of pollen deposited on each

flower must be independent of the number of flowers vis-

ited on a plant, we assume that the proportion of autoga-

mous pollen deposited increases with bout length, so that Pi

decreases as the bout progresses. Since the same total

number of flowers visited (i.e. the same interaction fre-

quency) can be achieved by visiting a single flower in

multiple plant visits per unit time, or many flowers in fewer

plant visits per unit time, the value of Pi must be corrected

for the number of flowers visited per plant. Thus, for each

bout length, the mean Pi may be estimated as

Pi ¼
Mi

b
¼ 1� k1ð Þ � 1� k1ð Þbþ1

b k1

: ð6Þ

Results

Preliminary observations: pollinator composition,

abundance and bout length

Seven insect groups were detected in 2005 and 2006. These

were: Apis mellifera, Bombus terrestris, Anthophora acer-

vorum, A. dispar, Bombylius sp., and two halictid bees. The

most abundant visitor in 2005 was Apis mellifera (Apis

hereafter; 50.67% of the visits, both populations pooled),

followed by Anthophora acervorum (22.82%), Anthophora

dispar (10.13%) and Bombus terrestris (Bombus hereafter;

10.38%). In 2006, the relative abundances were similar to

the previous year (Apis, 45.32% of the visits; Anthophora

acervorum, 21.23%; Anthophora dispar, 9.13%; Bombus,

12.32%). The rest of the insects were only rarely observed

(Bombylius sp., 8.41% of the visits, both seasons pooled;

halictid bees, 1.71% of the visits, only in 2006). Bombylius

sp. never entered L. lilacina flowers, and only used its

proboscis to attempt to collect nectar. For this reason, it was

not considered an effective pollinator (Sánchez-Lafuente,

unpubl. data; see also Vargas et al. 2010). The two halictid

bees were disregarded given the small sample size available

(only 9 flowers visited on 2 plants in 2006). We pooled both

Anthophora species into a single functional group, given

their similar sizes (mean ± SE body and proboscis length,

respectively; A. dispar: 23.70 ± 0.85 mm, n = 14 bees;

A. acervorum: 23.69 ± 0.95 mm, n = 17 bees) and behav-

iours when visiting L. lilacina plants (in terms of flower

handling time and effectiveness at seed production; see

Sánchez-Lafuente 2007). Thus, we retained three functional

groups for further analyses (Apis, Anthophora and Bombus).

Observations during the first week of each flowering

season yielded significant differences among the three

functional groups in bout length (F2,488 = 323.38, p \
0.001), with Apis making longer bouts (range 1–9 flowers/

bout, mean ± SE 7.90 ± 1.31 flowers/bout) than Bombus

(range 1–4 flowers/bout, mean ± SE 3.50 ± 0.16 flowers/

bout) and Anthophora (range 1–4 flowers/bout, mean ± SE

2.08 ± 0.156 flowers/bout). Differences were consistent at

both sites and seasons (no statistically significant interac-

tion terms). Although overall mean bout length varied

between sites (F1,8 = 7.92, p \ 0.03), absolute differences

were small (mean ± SE; SR = 3.95 ± 0.28 flowers/bout;

OT = 3.30 ± 0.19 flowers/bout). Bout length was positively
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influenced by floral display (F1,488 = 37.38, p \0.001), and its

variation was almost exclusively found within plants (99.25%

of the variance).

Differences among pollinator groups in effectiveness

at seed production

We recorded 913 flower visits, in both populations and

seasons, for the three pollinator groups considered. Apis

visited 464 flowers producing 4,671 seeds; Bombus visited

143 flowers producing 2,168 seeds; and Anthophora visited

306 flowers producing 7,015 seeds. The visited flowers

produced 13,854 seeds overall. Table 1 presents a detailed

summary of the number of flowers visited, and the seeds

produced by each pollinator group. These results indicate

that the three groups differed significantly (post hoc Tu-

key’s tests) in both the number of flowers visited (F2,147 =

6.13, p \ 0.003) and the number of seeds produced by

those flowers after a single visit (F2,145 = 8.60, p \ 0.001).

We found that the influence of the number of flowers

visited on seed production varied among pollinator groups

(pollinator 9 flowers visited interaction; F3,145 = 39.09, p \
0.001). Thus, while Apis was the pollinator that visited the

most flowers/plant (mean ± SE; Apis: 16.57 ± 2.05 flow-

ers/plant, Anthophora: 10.98 ± 0.94 flowers/plant, Bombus:

5.10 ± 1.62 flowers/plant), Anthophora was the pollina-

tor that produced more seeds/plant (mean ± SE; Apis:

158.91 ± 8.18 seeds/plant, Anthophora: 257.92 ± 9.92

seeds/plant, Bombus: 81.48 ± 6.11 seeds/plant). However,

Apis made significantly longer bouts than the other two

pollinator groups, and we analysed how differences in

bout length influenced seed production (Table 2). In this

case, we found that Apis, with the longest bouts, produces

(mean ± SE) 71.97 ± 2.34 seeds/bout, while Bombus and

Anthophora, with shorter bouts, produced 56.37 ± 1.64 and

51.37 ± 0.86 seeds/bout, respectively (all seasons and

populations pooled). As found in the case of the relationship

between flowers visited/plant and seed production/plant, a

significant interaction (pollinator 9 no. of bouts; Table 2)

suggested that the strength of the relationship between

number of bouts and seed production/bout differed among

pollinator groups.

To further understand the combined effect of number of

flowers visited/plant and bout length on seed production,

we analysed the per-visit effectiveness (i.e., seeds pro-

duced/flower visited) of each pollinator group. We found

increasing differences in per-visit effectiveness at seed

production among pollinator groups as bouts progressed

(pollinator 9 flower visitation order interaction; Table 3).

Thus, the effectivenesses of the three pollinator groups

seemed to be comparable for the first flower visited in each

bout, but Bombus and Anthophora did increasingly better at

producing seed than Apis in subsequent flowers (Fig. 1).

Overall, because Apis made significantly longer bouts than

Bombus and Anthophora, the mean number of seeds/flower

(i.e. the per-interaction effect) was higher for the latter

groups (mean ± SE: 16.42 ± 0.41 and 24.47 ± 0.38

seeds/flower for Bombus and Anthophora, respectively)

than for Apis (mean ± SE: 9.21 ± 0.36 seeds/flower; all

seasons and populations pooled).

Using the total number of flowers visited per plant by

each pollinator group as an estimate of interaction fre-

quency, we examined the relationship between interaction

frequency and plant seed production for each group as a

measure of pollinator total effect using linear regression.

We found that the slope for Apis was more gradual (6.75

seeds produced per plant per flower visited) than that

obtained for Bombus (10.72 seeds produced per plant per

flower visited), while that for Anthophora was the steepest

(12.39 seeds produced per plant per flower visited) (test for

slope comparison; Apis vs. Bombus: t56 = 2.15, p \ 0.01;

Apis vs. Anthophora: t56 = 6.33, p \ 0.001; Bombus vs.

Anthophora: t58 = 2.02, p \0.02). These results suggest an

increasingly strong influence of these groups on seed pro-

duction as the total number of flowers visited increases

(Fig. 2).

Theoretical variation in per-interaction effect,

and estimation of total effect

Figure 3 plots the normalised cumulative seed set of our

hypothetical insect types. Cumulative seed set increases

with the number of flowers visited per plant. However,

there are considerable differences in effectiveness among

Table 1 Summary of the number of Linaria lilacina flowers visited, and their seed production, by three pollinator groups (Apis, Bombus and

Anthophora), in two populations (SR and OT) and two seasons (2005 and 2006)

Pollinator group 2005 2006

SR OT SR OT

Flowers (n) Seeds (n) Flowers (n) Seeds (n) Flowers (n) Seeds (n) Flowers (n) Seeds (n)

Apis 125 1,377 112 975 130 1,512 97 807

Bombus 31 438 32 489 43 667 37 592

Anthophora 81 1,914 70 1,524 73 1,725 82 1,852
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insects with the same bout length, depending on their

pollen deposition ability, k1. The normalised cumulative

seed set asymptotes to (1 - k1)/k1, a decreasing function of

k1, so that variation in pollen deposition ability yields

higher or lower asymptotic values, thus approaching the

asymptotes for shorter or longer bout lengths, respectively.

We used Eq. 6 to calculate the variation in per-inter-

action effects related to bout length and pollen deposition

ability. Because per-interaction effects (Pi) are proportional

to Mi/b, its average value decreases with bout length and

with the pollen deposition ability of the pollinator (Fig. 4).

Overall, the results show that variations in mean per-

interaction effect (Pi) may occur in relation to the number

of flowers visited/plant, and the behaviours and abilities of

different pollinator types.

From Vázquez et al. (2005), we know that the total

effect of a pollinator type i (Ti) results from the product of

its interaction frequency (Ii) and per-interaction effect (Pi).

However, the latter parameter (Eq. 6) depends, at least in

self-incompatible plant species, upon variation in bout

length (b) and pollen deposition ability (k1). With this

information, the total effect of a pollinator type i may be

calculated with the expression

Ti ¼ Ii
1� k1ð Þ � 1� k1ð Þbþ1

b k1

: ð7Þ

Using this equation, and a range of interaction frequency

(Ii) of 1–120 flowers visited per observation period, we

have calculated the expected absolute total effects of our

hypothetical insect types. Values of bout length (b) and

deposition ability (k1) were the same as used in previous

analyses (Figs. 3, 4). The results representing the expected

total effect are plotted in Fig. 5.

Discussion

Using empirical data, we have performed a case study in

which the most frequent pollinator of a plant species in

two different populations and seasons, and hence the one

visiting more flowers overall, does not contribute the most

to plant reproduction in terms of seed production. Our

results show that the foraging strategy of the pollinators,

in particular the number of flowers visited before leaving

a plant, has a strong effect on their pollination effective-

ness. At least with self-incompatible plants, this effect

may be sufficiently strong that the most common pollin-

ators do not always contribute the most to the reproduc-

tive success of the plants, even though they may visit

more flowers per plant than less common pollinators. By

visiting more flowers per plant, pollinators are increasing

their flower visitation rate (within-plant travel time is

shorter than between-plant travel time) and simulta-

neously decreasing their expected effectiveness per visit,

presumably due to geitonogamous pollen transfer. This

foraging behaviour of the pollinators introduces a negative

correlation between their quantitative (interaction fre-

quency, Ii) and qualitative (per-interaction effect, Pi)

components of pollinator effectiveness. Thus, if the mean

per-interaction effect is higher when pollinators visit

fewer flowers per plant, a higher number of short plant

visits may yield more effective results, in terms of seed

production, than a lower number of longer plant visits,

even when the total number of flowers visited by each

pollinator is the same. When this is the case, the use of

interaction frequency as a surrogate for total effect may

be suspect.

The empirical evidence of within-plant variation in per-

interaction effect was obtained after we analysed the rel-

ative contributions of different pollinator groups (namely,

Table 2 Results of a mixed linear model testing the influences of the

number of bouts, pollinator group, population and season on the

number of seeds produced per plant

Fixed effects df F P

Pollinator group (PO) 2, 147 4.46 0.02

No. of bouts (NB) 1, 147 281.95 0.001

Population 1, 147 0.66 0.44

Season 1, 147 0.36 0.55

Flower production 1, 147 16.15 0.001

PO 9 NB 1, 147 92.85 0.001

Block effect % variance

Among plants 22.89

Within plants 77.11

Individual plants were considered blocks. Total flower production

was included as a covariate

P \ 0.05 in bold

Table 3 Results of a mixed linear model testing the influences of the

flower visitation order along a given bout, pollinator group and

population on seed production per flower

Fixed effects df F P

Pollinator (PO) 2, 837 52.17 0.001

Visitation order (VO) 1, 837 189.17 0.001

Population 1, 837 3.23 0.08

Season 1, 837 1.21 0.27

Floral display 1, 837 0.33 0.56

PO 9 VO 2, 837 51.26 0.001

Block effect % variance

Among plants 21.97

Within plants 88.13

Individual plants were considered blocks. Floral display was included

as a covariate

P \ 0.05 in bold
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Bombus, Anthophora and Apis) to seed production, using

L. lilacina, a self-incompatible herb, as a study system.

Because the proportion of xenogamous pollen on the pol-

linator decreases (and that of autogamous pollen increases)

as more flowers are visited on a plant (e.g. Strickler and

Vinson 2000; Karron et al. 2009; see also Rodet et al.

1998), the seed set of flower visit n ? 1 is lower than the

seed set of flower visit n. Therefore, average pollinator

effectiveness is a decreasing function of the number of

flowers visited per plant. Thus, the three pollinator groups

seemed to be functionally equivalent in the first flower

visited in each bout (Kendall and Smith 1975, 1976; Die-

ringer 1992), while effectiveness progressively decreased

in subsequent flowers visited. The rate at which effec-

tiveness decreases depends on the proportion of carryover

pollen deposited at each flower: the higher the proportion

Fig. 1 Relationship between

mean seed production

(seeds flower-1) and bout

length (flowers visited per bout)

for three pollinator groups in

two populations (SR and OT) of

Linaria lilacina in (a–b) 2005

and (c–d) 2006. Data are

averaged at each flower position

in the bout. Standard errors were

not plotted to enhance the

readability of the figure. See

‘‘Results’’ for a summary of

sample sizes

Fig. 2 Relationship between number of flowers visited per plant and

seed production per plant in Linaria lilacina for each pollinator group

(Anthophora: solid squares, dashed line; Bombus: solid circles,

dashed-dotted line; Apis: solid triangles, solid line). Lines represent

the predicted seed production from linear regression. Data are

averaged across seasons pooled for both study populations

Fig. 3 Normalised cumulative seed set (Mi) related to bout length

(b) for a number of hypothetical pollinator groups with different

pollen deposition capabilities (k1). Values were calculated from Eq. 5
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of pollen deposited at each visit, the faster the proportion of

xenogamous pollen approaches zero and the faster polli-

nator effectiveness decreases. In our system, pollinator

effectiveness decreased faster for Apis than for Anthophora

and Bombus. As we only allowed one visit per pollinator

group per virgin flower, and there are no differences in the

amount of total pollen deposited among flowers for each

pollinator group (Sánchez-Lafuente and Parra, unpubl.

data). The most probable explanation for this result is that

Apis deposits a higher fraction of autogamous pollen on

each flower (e.g. Rodet et al. 1998; Ivey et al. 2003; but see

Chamberlain and Schlising 2008) than Bombus and An-

thophora, most likely as a result of the ways in which it

handles flowers, spending more time per visit and pene-

trating the flower deeper than Bombus and Anthophora

(Sánchez-Lafuente 2007; Sánchez-Lafuente and Parra,

unpubl. data; see also Harder 1990; Thostesen and Olesen

1996).

A theoretical model allows us to predict how per-flower

seed set changes with the number of flowers already visited

on a plant and with the pollen deposition ability of the

pollinators. Controlling for bout length, pollinators with

higher pollen deposition capabilities (larger k1; including

both outcrossed and autogamous pollen) have lower nor-

malised cumulative seed sets per bout, since the cumulative

seed set approached its asymptotic value after the first 3–4

flowers visited/bout (e.g. Karron et al. 2009). In contrast,

lower deposition abilities lead to higher asymptotic

cumulative seed set, which is approached after a greater

number of visits. For example, the relationship between

bout length and normalised cumulative seed set is almost

linear for bout lengths of up to 9 visits (Fig. 3), and the

average pollinator effectiveness is little affected by bout

length.

Comparing model predictions with data on seed set per

flower, we can also estimate the proportion of available

pollen that bees deposit at each flower. When pollen

deposition ability (k1) is large, the effect of bout length on

pollinator effectiveness can be sufficiently high to break

the typical positive correlation between interaction fre-

quency and total effect. For example, fitting our model to

the seed production data in Fig. 1 leads to pollen deposition

values of 0.12, 0.16 and 0.31 for Anthophora, Bombus and

Apis, respectively. With these values of pollen deposition,

we found that, while the interaction frequency of Apis was

the highest among all the visitor groups, a less abundant

pollinator (Anthophora), which made shorter bouts, con-

tributed more to seed production. Although Bombus also

made shorter bouts than Apis, and therefore had higher

average per-interaction pollination effectiveness, the effect

was not sufficiently strong to compensate for the much

lower interaction frequency of Bombus, which conse-

quently had the lowest total effect of the three groups.

Similar results have been found for another self-incom-

patible plant species in which pollinator effectiveness has

been studied. Mayfield et al. (2001) compared the effec-

tiveness at seed production and pollen export in the self-

incompatible Ipomopsis aggregata (Polemoniaceae) of

Bombus appositus and several hummingbird species for

which this plant species was supposedly adapted. They

found that B. appositus visited fewer flowers per plant than

hummingbirds. However, they were 4.04 times more

Fig. 4 Variation in per-interaction effect (Pi) related to bout length

(b) for a number of hypothetical pollinator groups with different

pollen deposition capabilities. Values were calculated from Eq. 6

Fig. 5 Estimation of total effect (Ti) from interaction frequency (Ii)

related to bout length (b). Interaction frequency was estimated in

terms of number of flowers visited per observation period. We

represented a number of hypothetical pollinators with different

capabilities for pollen deposition (k1) for each bout length (b). Values

were calculated from Eq. 7. We show two examples of how the total

effect may depend on variations in bout length for pollinators with

similar pollen deposition abilities (solid and empty circles) and on

variations in pollen deposition ability for pollinators with similar bout

lengths (solid and empty squares)
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effective at seed production, and 2.75 times more effective

at pollen export per flower visit, than the birds. Conse-

quently, although their overall visitation frequency could

be between a third and a quarter that of hummingbirds in

some seasons, B. appositus had a higher total effect on

plant reproductive success.

Differences among pollinator groups in bout length and

pollen deposition ability may influence per interaction

effect independently of each other. In turn, variation in

pollinator abundance may be related to the total number of

interactions of each pollinator group. The outcome in terms

of the measured total effect may result from a combination

of these three parameters. For instance, in Fig. 5, the total

effect of a pollinator with a bout length (b) of 8 flowers per

plant visit and a pollen deposition ability (k1) of 0.02

(empty circle) is actually comparable to that of a pollinator

with b = 4 and k1 = 0.47, despite the large differences in

both parameters. However, differences in pollen deposition

ability may eventually be more important than differences

in bout length in generating variation in per-interaction

effects. Thus, while we would not expect floral display and/

or plant size to set a limit on the pollen deposition ability of

a given pollinator group when visiting plants of the same

species, those parameters may set a limit on the variation in

bout length (e.g. Waser and Price 1991; Di Pasquale and

Jacobi 1998; Strickler and Vinson 2000; Grindeland et al.

2005; Karron et al. 2009). For example, Pellmyr and

Thompson (1996) found differences in the number of

interactions and effectiveness among several insect groups

visiting the self-incompatible herb Lithophragma parvi-

florum (Saxifragaceae). However, because no differences

occurred among insect types in their bout lengths, given the

small floral display exhibited by the study species at any

given time, no variation in per-interaction effect associated

with variation in bout length would be expected. Thus, only

the number of bouts per plant (not the bout length) was

responsible for the variation in interaction frequency

among pollinator groups, and the total effect could be

accurately predicted from the interaction frequency alone.

Many ecological processes related to reproductive suc-

cess, demography or natural selection (among others) in

wild populations are context dependent. This implies the

occurrence of a number of variable outcomes depending on

the particular conditions in which these processes take

place (e.g. Rey et al. 2006; Alonso et al. 2007; see also

Thompson 1994, 2005). Understanding the relationship

between pollinator effectiveness and bout length is also

important if we are to explain variability in reproductive

success between plants, populations and years. The theo-

retical model can be applied not only to assess the seed

production of self-incompatible plant species, but also to

estimate the proportion of selfed and outcrossed seeds

produced in self-compatible species. In the presence of

later-acting inbreeding depression, these estimates are

essential to quantify pollinator effectiveness, as outcrossed

seeds are more valuable than selfed ones. By measuring the

seed set of a random sample of flowers visited by a single

pollinator of a given plant species, we can obtain an

unbiased estimate of this species’ pollination effectiveness.

However, plants and environmental traits, such as floral

display and plant density, may affect bout length (e.g.

Ohara and Higashi 1994; Ivey et al. 2003). The estimate

per interaction effect obtained in one population will

obscure the fact that the same pollinator species has dif-

ferent pollinator effectivenesses for plants of different

sizes, and it will be impossible to extrapolate from one

population measured one year to other populations or

years. For example, we found that bout length was directly

related to floral display (see also Robertson and Macnair

1995; Grindeland et al. 2005; Williams 2007), while plant

visitation was not. Consequently, differences in flowering

phenology or synchrony among plant populations of the

same plant species, originating by environmental or biotic

factors, or by differences among plants sizes, may directly

be responsible for the variation in bout length and number

of bouts of the same pollinator species (e.g. Strickler and

Vinson 2000), with presumed influences on the among-

flower variation in seed number and/or quality (e.g. Karron

et al. 2009).

At least two complementary and testable predictions for

plant–pollinator interactions may arise from our results.

First, we predict that interaction frequency will be a worse

predictor of total effect in self-incompatible than in self-

compatible species; while, in self-compatible species, the

predictive value of the interaction frequency as a surrogate

for total effects will decrease as the level of inbreeding

depression increases. In both cases, a lower mean per-

interaction effect may be expected as more flowers are

visited per bout, because the amount of autogamous pollen

will increase with bout length. Second, because bout length

is of interest to define the variation in per-interaction

effects, and hence its influence on the total effect, the

validity of the interaction frequency as a predictor of total

effect in such plant species may be reduced as the plant

size and/or floral display increase, as a larger number of

flowers open at any one time may allow pollinators to

increase their bout lengths. These predictions could also

arise from the dataset used by Vázquez et al. (2005), even

though they combined self-compatible and self-incompat-

ible species. Thus, although most of the 22 species inclu-

ded in the dataset used were self-compatible (ca. 70%), the

correlation between interaction frequency and per-interac-

tion effects was negative for most of the self-incompatible

ones. In cases with positive correlations, this could be due

to the absence of differences among pollinators in bout

length, as suggested above. However, the correlation
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between interaction frequency and total effect was positive

in all cases, and Vázquez et al. (2005) concluded that per-

interaction effects could be disregarded when explaining

the total effect. However, as shown in Fig. 2 from our

empirical data, a positive correlation between interaction

frequency and total effect does not guarantee that the

pollinator with the highest frequency would also contribute

the most to the total effect. A critical parameter to evaluate

whether a pollinator group contributes more than another to

seed production may be the ratio of mean per-visit effec-

tiveness (i.e. the mean per-interaction effect). The ratio of

mean per-interaction effects of Anthophora and Apis is

2.66. For any given interaction frequency, Apis would be

more valuable than Anthophora for seed production if it

visits more than 2.66 times as many flowers as Anthophora.

However, below this critical value, Anthophora would be

of greater value, despite the higher interaction frequency of

Apis. As the ratio of the difference in the number of flowers

visited by these pollinator groups was below the critical

value in both seasons (in 2005: 237 flowers visited by Apis/

151 flowers visited by Anthophora = 1.57; in 2006: 227

flowers visited by Apis/155 flowers visited by Anthophora

= 1.46), Anthophora consistently contributed more to seed

production than Apis, despite the latter visiting more

flowers. However, if we compare Bombus to Apis, we find

a critical value of 1.78. As the ratio of the difference in

number of flowers visited by these pollinator groups is

always above this critical value (in 2005: 237 flowers

visited by Apis/63 flowers visited by Bombus = 3.76; in

2006: 227 flowers visited by Apis/80 flowers visited by

Bombus = 2.84), the pollinator making more visits (Apis)

is, in this case, more valuable for seed production. Thus, as

in Vázquez et al. (2005), we found positive correlations

between interaction frequency and total effect for all of the

pollinator groups tested, but it was the ratio between per-

interaction effects that finally determined which of the

pollinators contributed the most to the total effect.

Overall, because differences in interaction frequency

may be overridden by differences originating from varia-

tions in bout length and/or pollen deposition ability, it is

clear that behaviour (Herrera 1987; Rodrı́guez-Gironés and

Santamarı́a 2010) may explain pollinator contribution to

plant reproduction better than the number of interactions.

Our results suggest that, at least for self-incompatible plant

species, the predictive value of the interaction frequency in

plant–pollinator interactions may be a ‘‘moving target’’

because it is context dependent. In other words, we do not

expect the same distribution for all its components under

different environmental conditions, even when the same

participants are involved. For simplicity, our model assumes

a linear relationship between pollen deposition and seed

production. That is, it fits species with post-zygotic mech-

anisms of self-incompatibility, while the results may be

approximate in cases with pre-zygotic mechanisms. How-

ever, even in these cases, the relationship between pollen

deposition and seed set may still be linear (depending on

each particular system), and the model may accurately

predict the total effects, as observed for our example species.

Our study assessed the importance of different insect

types as pollinators based upon their effectiveness at seed

production at the plant level, as measured through behav-

ioural and morphological features. However, our study

does not address the synergistic effect of each insect type in

the presence/absence of the rest of the insect types. In other

words, we have not tested how interactions among different

insect types may influence their value as pollinators, as

suggested by Aigner (2001). Because plants are pollinated

by a number of insect types constituting an assemblage,

these interactions may be important to define functional

groups, rather than individual pollinator types, as valuable

contributors to plant fitness (see Fenster et al. 2004). A

precondition for the definition of a functional group of

pollinators is that all pollinators in such group should have

additive effects on plant fitness, and this can only be tested

by varying the presence/absence or abundances of different

insect types and then analysing the fitness consequences of

such variations. Consequently, we suggest that the role of

the interaction frequency as a suitable predictor of total

effect must be tested for different pollination systems, in

different pollination environments, for different pollinator

assemblages, and across wider scales, to validate its gen-

eralised use as a quantitative measure in plant–pollinator

interaction networks.
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